313 research outputs found

    The role of genes, stress, and dopamine in the development of schizophrenia

    Get PDF
    The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients

    Assessing the impact of different penalty factors of the Bayesian reconstruction algorithm Q.Clear on in vivo low count kinetic analysis of [11C]PHNO brain PET-MR studies

    Get PDF
    INTRODUCTION: Q.Clear is a Bayesian penalised likelihood (BPL) reconstruction algorithm available on General Electric (GE) Positron Emission Tomography (PET)-Computed Tomography (CT) and PET-Magnetic Resonance (MR) scanners. This algorithm is regulated by a β value which acts as a noise penalisation factor and yields improvements in signal to noise ratio (SNR) in clinical scans, and in contrast recovery and spatial resolution in phantom studies. However, its performance in human brain imaging studies remains to be evaluated in depth. This pilot study aims to investigate the impact of Q.Clear reconstruction methods using different β value versus ordered subset expectation maximization (OSEM) on brain kinetic modelling analysis of low count brain images acquired in the PET-MR. METHODS: Six [(11)C]PHNO PET-MR brain datasets were reconstructed with Q.Clear with β100–1000 (in increments of 100) and OSEM. The binding potential relative to non-displaceable volume (BP(ND)) were obtained for the Substantia Nigra (SN), Striatum (St), Globus Pallidus (GP), Thalamus (Th), Caudate (Cd) and Putamen (Pt), using the MIAKAT™ software. Intraclass correlation coefficients (ICC), repeatability coefficients (RC), coefficients of variation (CV) and bias from Bland–Altman plots were reported. Statistical analysis was conducted using a 2-way ANOVA model with correction for multiple comparisons. RESULTS: When comparing a standard OSEM reconstruction of 6 iterations/16 subsets and 5 mm filter with Q.Clear with different β values under low counts, the bias and RC were lower for Q.Clear with β100 for the SN (RC = 2.17), Th (RC = 0.08) and GP (RC = 0.22) and with β200 for the St (RC = 0.14), Cd (RC = 0.18)and Pt (RC = 0.10). The p-values in the 2-way ANOVA model corroborate these findings. ICC values obtained for Th, St, GP, Pt and Cd demonstrate good reliability (0.87, 0.99, 0.96, 0.99 and 0.96, respectively). For the SN, ICC values demonstrate poor reliability (0.43). CONCLUSION: BP(ND) results obtained from quantitative low count brain PET studies using [(11)C]PHNO and reconstructed with Q.Clear with β < 400, which is the value used for clinical [(18)F]FDG whole-body studies, demonstrate the lowest bias versus the typical iterative reconstruction method OSEM. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13550-022-00883-1

    Cannabis Use Linked to Altered Functional Connectivity of the Visual Attentional Connectivity in Patients With Psychosis and Controls

    Get PDF
    Background: Both chronic cannabis use and psychotic disorders are associated with abnormalities in visual atten-tional processing. Using functional magnetic resonance imaging (fMRI), we sought to determine whether there would be a difference in functional connectivity in patients and controls with and without a history of cannabis use in the visual and dorsal attention networks. Methods: Resting-state fMRI data were acquired in patients with early psy-chosis with (EPC = 29) and without (EPNC = 25); and controls with (HCC = 16) and without (HCNC = 22) cannabis use. Results: There was a patient effect in both Visual-Dorsal Attention Internetwork (F(1,87) = 5.326, P = .023) and the Visual Network (F(1,87) = 4.044, P = .047) and a cannabis effect in the Dorsal Attention Network (F(1,87) = 4.773, P = .032). These effects were specific to the networks examined with no evidence for significant patient or cannabis effects in other canonical networks. Patients with a history of cannabis use showed increased connec-tivity in the Dorsal Attention Network (134%, P = .019) and Visual Dorsal Attention Internetwork (285%, P = .036) compared to non-using controls. In the EPC group con-nectivity of the Visual Network (ρ = 0.379, P = .042) and Visual-Dorsal Attention Internetwork (ρ = 0.421, P = .023) correlated with visual hallucinations which were significantly different from EPNC (P = .011). Dorsal attention network strength correlated with severity of dependence for cannabis (ρ = 0.215, P = .04). Conclusion: We demonstrate specific cannabis and patient effects in networks associated with visual attentional processing. There is a differential association with hallucinatory symptoms in patients with and without a history of cannabis use. This may indicate that dysconnectivity in these networks serves different roles in the context of cannabis use

    Social Desirability and the Celebrity Attitude Scale

    Get PDF
    The possibility of social desirability bias has often been neglected in the construction and evaluation of attitudinal scales and personality inventories in psychology and related disciplines. The present study aimed to explore the potential influence of such biases on respondents’ self-reported celebrity worship. Specifically, we had a student sample (n = 187) complete a) measures of two different forms of social desirability bias (externally-oriented “Impression management” vs. internally-oriented “self-deceptive positivity”) and b) the Celebrity Attitude Scale (CAS). Results showed that neither measure correlated significantly with the CAS. Furthermore, neither gender nor delivery mode (online vs. paper-and-pencil) mediated the non-significant relationships. Our results add to the confidence researchers might have in using this tool to measure attitudes toward one’s favorite celebrity. Other results are generally consistent with previous studies using the CAS

    The relationship between glutamate, dopamine, and cortical gray matter: A simultaneous PET-MR study

    Get PDF
    Prefrontal cortex has been shown to regulate striatal dopaminergic function via glutamatergic mechanisms in preclinical studies. Concurrent disruption of these systems is also often seen in neuropsychiatric disease. The simultaneous measurement of striatal dopamine signaling, cortical gray matter, and glutamate levels is therefore of major interest, but has not been previously reported. In the current study, twenty-eight healthy subjects underwent 2 simultaneous [11C]-( + )-PHNO PET-MRI scans, once after placebo and once after amphetamine in a double-blind randomized cross-over design, to measure striatal dopamine release, striatal dopamine receptor (D2/3R) availability, anterior cingulate glutamate+glutamine (Glx) levels, and cortical gray matter volumes at the same time. Voxel-based morphometry was used to investigate associations between neurochemical measures and gray matter volumes. Whole striatum D2/3R availability was positively associated with prefrontal cortex gray matter volume (pFWE corrected = 0.048). This relationship was mainly driven by associative receptor availability (pFWE corrected = 0.023). In addition, an interaction effect was observed between sensorimotor striatum D2/3R availability and anterior cingulate Glx, such that in individuals with greater anterior cingulate Glx concentrations, D2/3R availability was negatively associated with right frontal cortex gray matter volumes, while a positive D2/3R-gray matter association was observed in individuals with lower anterior cingulate Glx levels (pFWE corrected = 0.047). These results are consistent with the hypothesis that the prefrontal cortex is involved in regulation of striatal dopamine function. Furthermore, the observed associations raise the possibility that this regulation may be modulated by anterior cingulate glutamate concentrations

    Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis.

    Get PDF
    BACKGROUND Antipsychotic treatment is associated with metabolic disturbance. However, the degree to which metabolic alterations occur in treatment with different antipsychotics is unclear. Predictors of metabolic dysregulation are poorly understood and the association between metabolic change and change in psychopathology is uncertain. We aimed to compare and rank antipsychotics on the basis of their metabolic side-effects, identify physiological and demographic predictors of antipsychotic-induced metabolic dysregulation, and investigate the relationship between change in psychotic symptoms and change in metabolic parameters with antipsychotic treatment. METHODS We searched MEDLINE, EMBASE, and PsycINFO from inception until June 30, 2019. We included blinded, randomised controlled trials comparing 18 antipsychotics and placebo in acute treatment of schizophrenia. We did frequentist random-effects network meta-analyses to investigate treatment-induced changes in body weight, BMI, total cholesterol, LDL cholesterol, HDL cholesterol, triglyceride, and glucose concentrations. We did meta-regressions to examine relationships between metabolic change and age, sex, ethnicity, baseline weight, and baseline metabolic parameter level. We examined the association between metabolic change and psychopathology change by estimating the correlation between symptom severity change and metabolic parameter change. FINDINGS Of 6532 citations, we included 100 randomised controlled trials, including 25 952 patients. Median treatment duration was 6 weeks (IQR 6-8). Mean differences for weight gain compared with placebo ranged from -0·23 kg (95% CI -0·83 to 0·36) for haloperidol to 3·01 kg (1·78 to 4·24) for clozapine; for BMI from -0·25 kg/m2 (-0·68 to 0·17) for haloperidol to 1·07 kg/m2 (0·90 to 1·25) for olanzapine; for total-cholesterol from -0·09 mmol/L (-0·24 to 0·07) for cariprazine to 0·56 mmol/L (0·26-0·86) for clozapine; for LDL cholesterol from -0·13 mmol/L (-0.21 to -0·05) for cariprazine to 0·20 mmol/L (0·14 to 0·26) for olanzapine; for HDL cholesterol from 0·05 mmol/L (0·00 to 0·10) for brexpiprazole to -0·10 mmol/L (-0·33 to 0·14) for amisulpride; for triglycerides from -0·01 mmol/L (-0·10 to 0·08) for brexpiprazole to 0·98 mmol/L (0·48 to 1·49) for clozapine; for glucose from -0·29 mmol/L (-0·55 to -0·03) for lurasidone to 1·05 mmol/L (0·41 to 1·70) for clozapine. Greater increases in glucose were predicted by higher baseline weight (p=0·0015) and male sex (p=0·0082). Non-white ethnicity was associated with greater increases in total cholesterol (p=0·040) compared with white ethnicity. Improvements in symptom severity were associated with increases in weight (r=0·36, p=0·0021), BMI (r=0·84, p<0·0001), total-cholesterol (r=0·31, p=0·047), and LDL cholesterol (r=0·42, p=0·013), and decreases in HDL cholesterol (r=-0·35, p=0·035). INTERPRETATION Marked differences exist between antipsychotics in terms of metabolic side-effects, with olanzapine and clozapine exhibiting the worst profiles and aripiprazole, brexpiprazole, cariprazine, lurasidone, and ziprasidone the most benign profiles. Increased baseline weight, male sex, and non-white ethnicity are predictors of susceptibility to antipsychotic-induced metabolic change, and improvements in psychopathology are associated with metabolic disturbance. Treatment guidelines should be updated to reflect our findings. However, the choice of antipsychotic should be made on an individual basis, considering the clinical circumstances and preferences of patients, carers, and clinicians. FUNDING UK Medical Research Council, Wellcome Trust, National Institute for Health Research Oxford Health Biomedical Research Centre

    In vitro formation of neuroclusters in microfluidic devices and cell migration as a function of stromal-derived growth factor 1 gradients

    Full text link
    Central nervous system (CNS) cells cultured in vitro as neuroclusters are useful models of tissue regeneration and disease progression. However, the role of cluster formation and collective migration of these neuroclusters to external stimuli has been largely unstudied in vitro. Here, 3 distinct CNS cell types, medulloblastoma (MB), medulloblastoma-derived glial progenitor cells (MGPC), and retinal progenitor cells (RPC), were examined with respect to cluster formation and migration in response to Stromal-Derived Growth Factor (SDF-1). A microfluidic platform was used to distinguish collective migration of neuroclusters from that of individual cells in response to controlled concentration profiles of SDF-1. Cell lines were also compared with respect to expression of CXCR4, the receptor for SDF-1, and the gap junction protein Connexin 43 (Cx43). All cell types spontaneously formed clusters and expressed both CXCR4 and Cx43. RPC clusters exhibited collective chemotactic migration (i.e. movement as clusters) along SDF-1 concentration gradients. MGPCs clusters did not exhibit adhesion-based migration, and migration of MB clusters was inconsistent. This study demonstrates how controlled microenvironments can be used to examine the formation and collective migration of CNS-derived neuroclusters in varied cell populations

    An Improved Technique for Measurement of Cold HI in Molecular Cloud Cores

    Full text link
    The presence of atomic gas mixed with molecular species in a "molecular" cloud may significantly affect its chemistry, the excitation of some species, and can serve as probe of the cloud's evolution. Cold neutral atomic hydrogen (HI) in molecular clouds is revealed by its self absorption of background galactic HI 21-cm emission. The properties of this gas can be investigated quantitatively through observation of HI Narrow Self-Absorption (HINSA). In this paper, we present a new technique for measuring atomic gas physical parameters from HINSA observations that utilizes molecular tracers to guide the HINSA extraction. This technique offers a significant improvement in the precision with which HI column densities can be determined over previous methods, and it opens several new avenues of study of relevance to the field of star formation.Comment: Accepted for Astrophycal Journal 8/200
    corecore